骑手,就彻底和算法是断联状态。
什么ai,什么人工智能,什么hatpt。别管它名头喊得有多响,逼格吹得有多高。最后都逃不出一点--数据驱动。
再厉害的ai模型也是由数据驱动的,数据是一切的源头。哪怕对于算力系统来说,也是同样的。
数据代表着方向和目的地,没有它的话,即便是千万级别的豪车也不知往哪开。
假如林远设想的这种数据途径建设方式是行不通的,那麻烦还不仅止于眼前的这个外卖算法优化项目,更大的麻烦来自于这算力系统的使用方式。
算力系统能在简单引导下能主动完成数据采集,相比于采集好了数据再丢给算力系统。这就好比是自动驾驶和手动驾驶的区别。
这其中区别可就大了。
就像手动驾驶的时候不能分心干别的事情一样,如果数据必须手动采集后再丢给算力系统,那今后林远将耗费n多的时间去处理这类数据采集问题。
而更进一步的麻烦是。如果以自动驾驶和手动驾驶为例,要是车子的目的是将人送到某个地方,那两者区别也就是车上的人是否可以分心而已。可要是本身的目的不是为了送人而就是为了让车子开到一个地方呢。
也就是说,假如驾驶的目的就是为了让车子从一个地方到另一个地方。那自动驾驶和手动驾驶就将是天壤之别。
因为自动驾驶的话,人可以不用在车里。人只需要给车子设定好目的地后就不用管了,一个人就可以应付成千上万辆车子。可手动驾驶就不行了,一个人就只能应付一辆车子。
这叫什么。
这叫底层原理影响上层应用。
底层原理的优势反馈到上层应用上常常会产生指数级的差别。数据采集
本章未完,请点击下一页继续阅读! 第2页 / 共4页